
A Report on Additional and Post-Processing Techniques used in a
Computer-Generated Scene

Matthew Jenkinson ∗

Edinburgh Napier University
Computer Graphics (SET08116)

Figure 1: From left to right: An image displaying the reflection of the sky-box in the water, an image displaying the same polygon with a
texture, an image showing the sea with a normal-mapped texture, and the Sobel post-processing technique on the whole scene.

Abstract

The aim of this report is to demonstrate post-processing techniques
and some of the more advanced methods used when creating a 3D
computer-generated scene. It shall explain how the techniques are
used and how they are created. The audience this article is aimed at
is quite broad, from those wanting to learn about these techniques
and implement them themselves, to those who are just curious about
the short-cuts used in creating video games; that make them look
so good and run so well.

Keywords: post-processing, blur, grey-scale, edge-detection, So-
bel, negative, invert, frustum, cull, reflection, sky-box, OpenGL,
normal, mapping, bump, shader, optimization

1 Introduction

Including post-processing effects in one’s scene makes it more vi-
sually appealing and often more realistic. In games this must be
efficient as it will need to be rendered in real-time. This includes
using textures for height information but not increasing the number
of polygons. The effects used are as follows:

• Blur

• Negative

• Grey-Scaling

• Sobel

• Using a sky-box

• Frustum culling

• Normal mapping

• Reflection

When using techniques such as these one must be careful of the
performance, so this means prioritizing the shader (GPU) over the
CPU and reducing the number of calls to the shader within each
frame. Decreasing the quantity of the geometry also helps, geom-
etry can be manipulated to look as if it is more detailed than the

∗e-mail:40163650@napier.ac.uk

number of polygons it has. The level of detail in the scene is worth
considering as well, if there are a lot of objects that are unimpor-
tant then there is no need to make them detailed, however in some
games this is an option that can be toggled.

Implementing shader-based techniques can be difficult as they can-
not be debugged without the correct tools. Using methods found
online may also be problematic as they are not always well-
documented.

The performance of some effects are limited by the user’s hard-
ware so optimization is very important. For example using an AMD
Radeon R9 390 GPU one can get frames per second of over 100,
using an NVidia NVS 510 display adapter one can achieve a frame-
rate rendering the same scene of around 10. However most modern
graphics cards will give a stable 60 FPS rendering this scene.

2 Overview of Techniques

• Blur: Sampling the colours of pixels after the scene has been
rendered on the first pass then averaging these colours and
changing the surrounding colours. A process known as box
filtering.

• Negative: Another post-processing technique that requires
the scene to be rendered at least once before applying it.
Simply put, the resultant colour is one minus the original
colour, i.e: (1 - red-component, 1 - green-component, 1 - blue-
component).

• Grey-Scaling: This takes the average of the 3 components of
the colour of each pixel and sets that colour to be that average.

f l o a t avg = (o u t c o l o u r . x + o u t c o l o u r . y +
o u t c o l o u r . z) / 3 . 0 ;

vec4 g rey = vec4 (avg , avg , avg , 1 . 0) ;

• Sobel: This technique finds the edges of shapes within the 2D
image that makes up the geometry and highlights them. It is a
type of edge detection algorithm [Overvoorde 2015]

• Sky-Box: Essentially this is a large polygon that only
uses 12 triangles. It is typically larger than the scene and
moves with the camera so that it never reaches it. [dev]

Figure 2: The 6 images used to create a sky-box arranged in
a net.

• Frustum Culling: In an effort to improve efficiency and
performance in one’s program one may use frustum culling,
this is used to detect whether or not a point (or box around an
object) is within the camera’s field of view, if it is not then no
calculations (lighting or otherwise) are performed on it and
it is not rendered. [ARF 2011] Typically the dot product is
used to test whether a point is in front of or behind a plane.

Figure 3: An image of the frustum created by the camera.

• Normal Mapping: These RGB textures are used to calculate
how the surface is lit, giving the illusion of depth. This is
done by setting the normals of the surface with this texture.
[Kenwright 2014]

• Reflection: This is where at least one texture is reflected in
another’s surface. In OpenGL in a GLSL shader it can be cal-
culated like so (this is for a reflection of a sky-box in water):

vec3 R = r e f l e c t (v i e w d i r , n o r m a l i z e (normal)) ;
vec4 r e f l e c t c o l o u r = t e x t u r e (skybox , R) ;
r e f l e c t c o l o u r .w = 1 . 0 ;

In this case R is the texture coordinate of the location of the pixel
that is seen in the reflection. Unfortunately this technique is inac-
curate but it is fast and it looks the part. In physics the reflection is
calculated as follows:

angleOfReflection = 180− angleOfIncidence

In the scene however, the rays are not emitted from the light source
but from the camera and so the calculation is a little different. We
also use the normal of the texture so that we can create a specular
effect. Also if we wish to be accurate we would need to calculate
the light’s refraction which would greatly affect the performance.

3 Where the techniques are used

Normal mapping and reflections are used in the water to give it
more depth and realism, it looks especially good with specular
lighting.

Figure 4: An image of the sea with the normal map applied. Some
of the texture and reflection is lost with the bump map.

The sky-box surrounds the entire scene and moves with the camera
but does not rotate with it.

Frustum culling is only applied to the light-house as the technique
is only an approximation and would not give that much of an im-
provement to performance if applied to the entire scene. The reason
for this is that all of the street lights are contained in one mesh as an
optimization and if the frustum culling affected one of them then it
would affect all of them.

All of the other techniques are applied to the whole scene one
at a time but the current technique can be changed in real-time.

Figure 5: An image demonstrating the different effects at the same
point within the scene.

The scene was also optimized in two more ways, the water - which
was originally part of the mesh that made up the terrain - consisted
of many triangles, now it is not generated with the rest of the terrain
and only consists of two polygons. The street-lights were originally
cylindrical and had many vertices in all planes, at first they were
changed to not have more than one triangle in the y-plane around
their edges, this improved performance greatly, at this it was de-
cided to decrease their number of polygons further by making them
into cuboids and therefore increase the performance further.

4 Conclusion

What one should take away from this is that these techniques aren’t
that complicated and are not too resource intensive for the graph-
ics card to achieve. Some techniques are more useful than others,
for example normal mapping is beneficial to every scene wanting to
achieve some sort of realism but grey-scaling is only useful to those
wanting an artistic look to their scene. There are other techniques
out there that do different things, lens flare and depth of field can be
good to mimic an actual camera for example. What is most impor-
tant is that whatever you create must have some artistic coherence
and integrity, know what effects to use and know when to use them.
Use these effects wisely.

References

ARF, 2011. Geometric approach [to frustum culling] - extracting
the planes. 2

DEV, O. Tutorial 25: Skybox. 1

KENWRIGHT, B., 2014. Bump mapping. 2

OVERVOORDE, A., 2015. Opengl framebuffers. 1

