
Report on The Rendering of a 3D Scene depicting the City of Edinburgh using
various rendering methods and techniques

Jenkinson, Matthew ∗

Edinburgh Napier University
Computer Graphics (SET08116)

Figure 1: Images left to right: 2 Sine waves used to test the plane builder before using maps, A demonstration of specular lighting only used
on the water (global illumination), Using the vertex shader to determine the colour based on the angle of the vector, Using the wire-frame
rendering mode on a fully specular black mesh (most of the work done is in the shader), A near-finished version including street-lights (not
to scale).

Abstract

The aim of this article is to describe the process of creating a 3D
scene using OpenGL, within this, multiple techniques such as dif-
ferent types of shading will be covered. As such it may be used as
a guide for beginners attempting to achieve a similar goal and pro-
vide some insight to the average computer user as to how graphics
are rendered using a computer.

This is intended to be a simple overview and not a comprehensive
guide.

This particular project focusses on creating a 3D rendition of Edin-
burgh using a height map then applying various lights and meshes
to the geometry.

Keywords: ambient, attenuation, diffuse, emissive ,fragment, ge-
ometry, global illumination, gouraud, lighting, map, mesh, phong,
pixel, plane, point, polygon, scene, shading, specular, spot, texture,
vector, vertex

1 Introduction

Before the advent of Google Maps and Google Earth there were no
easily accessible (and traversable) 3D models of The Earth’s terrain.
This was not so long ago, at the time however there were maps
that contained height data. Unfortunately until recently computers’
graphics cards have not been so powerful (relatively) so rendering
such scenes in high detail was impossible. Now we can do this
processing on our mobile phones!

The motivation behind this project is to show how trivial it can be
to create such a scene in modern times, and to celebrate this luxury
of powerful computing by adding many lights of different styles.

The effects that this program uses are as follows:

• Using a height map to generate terrain.

• Interpolation.

• Multiple textures.

• Materials.

∗e-mail:40163650@live.napier.ac.uk

• The GL MIRRORED REPEAT wrapping technique.

• Multiple meshes (generated using different methods) within
the geometry.

• Different glPolygon modes.

• Multiple cameras including a free-camera.

• Vertex shading.

• Fragment (per-pixel) shading.

• Gouraud shading.

• Phong shading.

• Diffuse lighting.

• Selective specular lighting.

• Multiple light-sources.

• A positionable point light - achieved in real-time (note that
this adds a little ambient at a certain height and turns off if
below the plane).

• Multiple spot lights.

• Rotating geometry by one method.

• Rotating spot light by another.

• Adaptation for NVidia processors so that it does not run so
slowly.

2 Difficulties, Limitations and Workarounds

The difficulty comes from several places in this project the first
is long loading times during compilation, this is due to the CPU
reading in the height map on a single core and storing its data in an
array, then using each item in the array a position vector is gener-
ated, this is based off the location of the pixel in the image and its
colour. Since the image is 1024x1024 and we want to generate a
3D position in a mesh for each pixel this results in over 1 million
calculations. The outcome of this was imperfect as there was little
variation in the heights it chose (note that there are 256 shades of
white / grey / black but there are many more available height posi-
tions in a scene) so it had to be interpolated to make it smoother.

This brought the number of calculations in just creating the mesh to
18 million. To combat this a step value was created - a number to
decide how many pixels in a direction to skip and use the previous
values for. This makes for a smoother but less accurate image, it
did make the loading time 16 times faster when set to a value of 4.

One small issue is the matter of speed (actual movement speed not
frame-rate) when running the program on different machines, for
example when testing using the NVidia architecture the movement
speed of the camera is greatly reduced. The quick fix for this is to
find the OpenGL provider for the computer in question and change
the move amount based on that.

Figure 2:

boo l i n i t i a l i s e ()
{
/ / . . .

nv = ”NVIDIA C o r p o r a t i o n ” ;
ve = (c h a r ∗) g l G e t S t r i n g (GL VENDOR) ;

/ / . . .
}
/ / . . .
boo l u p d a t e (f l o a t d e l t a t i m e)
{
/ / . . .

i f (s t r c mp (nv , ve)==0)
{

/ / movAm = move amount
movAm = 0 . 3 f ;

}
e l s e
{

movAm = 0 . 0 3 f ;
}

/ / . . .
}

The third difficulty faced in the project relating to performance is to
do with the sheer quantity of light sources. The design used featured
a ’map’ that determined each light’s location. There are 394 of these
particular lights in total. Originally the effect these lights created
used the Phong shading technique, as previously discussed there
are more pixels in the geometry than vertices, and there are over 1
million vertices. To improve performance the lighting calculation
for these 394 spot-lights was switched to Gouraud shading. This
did increase the fps (frames-per-second) but unfortunately gave it a
more jagged look in some places. In Figure 3 the blue light uses
Gouraud shading whilst the white light is Phong shaded.

Figure 3:

One final limitation is that is really difficult to render a lot of
’unique’ meshes into the geometry with the helper classes given,
they were extracted and modified so that they themselves could cre-
ate more than one ’mesh’ in a mesh when given a quantity and a

vector array of 3-dimensional vectors. One further improvement
that could be made to this is to use a geometry shader to render
them. This is planned for a later date, note that it would be bene-
ficial to also use the geometry shader for the main mesh that is the
terrain.

3 Effects & Techniques

What will be covered in this section: This section aims to cover
the principals used in rendering, shading and in traversing the ge-
ometry.

First Principles: What is light? Light is energy that can be
sensed by organic receptors, it is perceived differently based on its
frequency and intensity. It travels in streams of particles that are re-
flected, refracted, diffracted and emitted by physical objects. Light
is also effected by quantum mechanics. In order to see things with a
computer through a monitor as we would in the real world, i.e. in 4
dimensions, we must model it. It is impractical to attempt to model
it exactly as it requires a lot of computing power and a similar effect
can be achieved much more easily. So we model light as rays (after
all, it has wave-particle duality) which are much easier to represent
on a computer, using vectors.

Vectors: What is a vector? Put simply a vector is a collection
of related numbers arranged in a rectangle. The values within the
vector can be used to represent many things, a point, a line, a curve,
a colour or even an equation. Vectors can be easily rendered, it was
even achieved in 3D as early as the 1960s when general computing
power was much lower [Lyall-Watson 1967]

Polygons: A polygon is a collection of 3 (possibly 2 with the
third edge derived) or more vectors that make up a shape. The
easiest shape to make is a triangle. Any one triangle can be seen
as a 2D object provided that the plane is rotated to face the viewer.
When a second triangle is introduced on a different plane the scene
must be viewed in 3D. Many polygons can be used to create 3D
meshes, this is how most objects are represented in 3 dimensions on
a computer, especially in games technology and industrial design.

Cameras: At this point we have a representation of an object
stored in a computer, but how do we display that on a screen? In na-
ture humans use 2 eyes which act as cameras and a brain which acts
as a processor to interpret our 3D surroundings. Rays of light from
a source are reflected off objects and into our eyes, from this we
can tell the colour of the object and its position. Computers work
in a similar way to represent this phenomenon although they are
more like projectors, in this example imagine a permeable screen,
an object behind the screen and a source of light in front of it (our
projector / computer). Rays are projected from the projector in ev-
ery direction, if they hit the object they are traced back to the screen
and a pixel at that point is coloured appropriately, this is known as
ray-tracing. With enough rays we can build up a view-projection
matrix (a type of vector which is a collection of vectors) and render
it to the screen.

Figures 4 & 5:

Lighting, Colouration & Texturing: The most simple form of
lighting and colouring is ambient. With this style of lighting we
add the colour of the object (as given by the texture or material)
with the colour of the light. Colours are represented as vectors of 4
components, during the addition the first values are added together,
so are the second, third and fourth - each with the corresponding
element. The values stored in a colour are the red, green, blue and
opacity components. To obtain the colour of a pixel on a textured
object, the texture has to be mapped to the surface. Why would we
use ambient lighting? Scenes that are set in places such as under-
water will have a blue / green component to them throughout. A
room lit by flame will have an orange glow to it.

Global illumination is a technique used to represent sunlight. This
is feasible because rays of light from The Sun can be considered
parallel because their source is so far away that the angle between
them is negligible. The equation for this requires the normals of
the surface (a unit vector perpendicular to the plane the surface is
on, it is calculated using the cross product of 2 of the polygon’s
edge vectors) and the direction of the light (this is also normalized,
divided by its length, length is found using Pythagoras). We find the
dot product of these 2 vectors and multiply the result by the light
colour and the surface colour. There are 2 methods to finding the
surface colour, diffuse and specular.

final colour = light colour ∗ surface colour ∗ (normal ·
light direction)

When transforming a mesh, one must also remember to transform
its normals so that it can be shaded properly.

Diffuse lighting uses this basic model. Specular lighting also takes
into account the position of the viewer’s eye. The specular effect
gives a glossy appearance to objects whereas diffuse gives them a
matte look. We use the eye direction, E and the light direction, L.
Then we calculate the half vector between them, H . The equation
is similar to the previous one (note that N represents the normal
and m represents the shininess of the object).

E =
eye position− object position

||eye position− object position||

H =
L+ E

||L+ E||

final colour = light colour ∗ surface colour ∗ (N ·H)m

A point light has a position and emits light in all directions from it.
A spot light also has a position, this however only emits light in one
direction in the shape of a cone. Both of these have a limit to how
far they are emitted, they do not just cut out after a certain distance,
they have an attenuation factor to determine how much of the scene
they light. This is given by the following equations.

constant = a given value

linear =
2

range

quadratic =
1

range2

attenuation =
1

constant+ linear ∗ distance+ quadratic ∗ distance2

This is just multiplied to the colour. [Chalmers 2014-15]

There are 2 main approaches that lighting can be applied to the
scene with use of the shaders, they are Gouraud shading and Phong
shading. Gouraud takes advantage of the vertex shader and uses it
to calculate the light at each vertex in a scene, the colour of poly-
gon is then calculated from its vertices’ colours. It is worth noting
that the lighting calculations are fairly heavy so Gouraud shading is
seen as a short-cut. Phong shading calculates the lighting for each
individual pixel in the scene, this means that it is more accurate but
it is quite difficult for older / lower quality GPUs to use frequently,
which means that it has not often been used until fairly recently.
In terms of programming it uses the same calculations but they are
done in the fragment shader and not the vertex shader.

4 How these techniques have been used in
the project

This project uses multiple meshes, the main one is a plane whose
heights have been transformed using data from a height map.

Download Link to the Data used.

To achieve this the helper method for creating planes was modified
so that it could take an image as a parameter. Then an interpolation
method was created so that it didn’t appear so staggered.

Figure 6:

This is the side view of the mesh generated by the height map in
Figure 7 before being interpolated

http://terrain.party/api/export?name=Edinburgh&box=-3.133065,55.996692,-3.261570,55.924826

Figure 7:

Figure 8:

The height map used in the project. - Dark, low, light, high.

Originally the project used global illumination to light the scene
but this was changed to a large point light so that it could be trans-
formed to simulate the movement of The Sun. This particular point
light had an effect applied to it in the fragment shader to create an
orange hue (ambient) when it was at a certain height to mimic The
Sun setting.

The terrain has selective specular shading so that just the water is
shaded, again this was a test of height. In Figure 1 one can see
the results of testing the normal angles and applying shading to
them, there were many tests to see what could be done with shading
based on 3D position, colour and normal angle however these did
not make it into the final scene as there was no practical reason to
use them. Here is the code used to determine which sections have
specular lighting applied to them with the spot lights.

vec4 p r i m a r y = mat . e m i s s i v e + d i f f u s e ;
vec4 s e c o n d a r y = s p e c u l a r ;

s e c o n d a r y .w = 1 . 0 ;
p r i m a r y .w = 1 . 0 ;

vec4 s p o t c o l o u r ;

i f (p o s i t i o n . y < 0 . 1)
{
s p o t c o l o u r = p r i m a r y ∗ t e x c o l o u r + s e c o n d a r y ;
}
e l s e
{
s p o t c o l o u r = p r i m a r y ∗ t e x c o l o u r ;
}

The street lights were added to the terrain using another map (this
was at 1/4 resolution to reduce loading times so not as many pixels
had to be read, their x and z positions were then multiplied by 4 to
compensate.) They had to be placed at the same time as the height
map was generated so that they could get appropriate y co-ordinates
from the mesh. Each light is represented by a white pixel.

Figure 9:

In the project all spot lights use Gouraud shading, that is because
there are 396 of them (when including the light-house and the light
above it.) If this were Phong shaded there would be many more
calculations to do than the 400 million it does in the vertex shader
(over 1 million vertices, about 400 lights). The point light however
does use Phong. The result of this is a drop in frame-rate but with
all calculations in the fragment shader it was impossible to render
the scene in real-time and traverse it.

With regards to texturing, the scene uses multiple textures, one for
the terrain, 2 for the light-house, one of which is used again for the
street-lights. The head of each street-light uses the same texture but
this cannot be seen as its emissive property of its material is set to
full white. The terrain texture is transformed to synchronise with
its mesh, then its edges are mirrored so that it looks more realistic
where it is repeating.

Some objects in the scene are transformed, for example the light-
house ’bulb’ is rotated along with the light it emits, the bulb is ro-
tated using the helper method. The spot light is rotated using a
quaternion. The spot light used as the sun can be controlled using
the scroll-wheel on the user’s mouse. It is rotated about a point.

4.1 List of Libraries and Headers included in the
Project:

• graphics framework.h

• glm\glm.hpp

• iostream

• atlimage.h

• string.h

• ctype.h

• The libENUgraphics Library

• assimp.lib

• FreeImage.lib

• glew3.lib, glew3dll.lib, glew32.lib & glew32s.lib

• libnoise.lib

• Assimp32.dll

• D3DCompiler 42.dll

• D3DX9 42.dll

• FreeImage.dll

• glew3.dll & glew32.dll

• libnoise.dll

Note that not all of these were actually utilised.

5 Conclusion

In this project many aspects of rendering were covered. The main
feature of this project is the terrain generated with the height map
and the lighting effects applied to it. In the future this project is to be
improved, it is desirable to optimise the terrain and mesh generation
by using the geometry shader and it is also desirable to apply new
post-processing techniques to the scene in real-time. Some aspects
that are missing from this project that were intended were blended
textures, bump mapping (of textures) and transparency. This could
be included in a future update.

In the future projects will not contain as many objects (or at least
fewer meshes with as many objects making them up) and light
sources to reduce calculations, for the effect that is achieved the
number of FPS lost is not worth it. The map reading part of the pro-
gram works well and shall be used again, it has many uses, not just
for creating terrain but for adding objects. Using an actual bump
map like ones used in targa files should also increase performance,
though this is not a practical solution if one would want to add col-
lision detection to the mesh. Again, the geometry shader is the way
forward here, especially for creating many copies of the same ob-
ject.

Figure 10:

References

CHALMERS, D. K., 2014-15. Set08116 computer graphics —
workbook. [Online; link]. 3

LYALL-WATSON, M., 1967. Tomorrow’s world — elliot light-pen.
[Online; accessed 13-March-2016; link]. 2

http://moodle.napier.ac.uk/pluginfile.php/1029713/mod_resource/content/1/workbook.pdf
http://www.bbc.co.uk/archive/tomorrowsworld/8004.shtml

